Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 889
Filtrar
1.
Mar Biotechnol (NY) ; 26(2): 404-420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558367

RESUMO

Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.


Assuntos
Sacos Aéreos , Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Gelatina , Animais , Gelatina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Camundongos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Osteogênese/efeitos dos fármacos , Cyprinidae/metabolismo , Hidrólise , Subtilisinas/metabolismo , Compostos de Bifenilo/química , Proteínas de Peixes/metabolismo , Picratos
2.
Food Chem ; 446: 138763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428077

RESUMO

Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.


Assuntos
Cálcio , Osteoporose , Ratos , Animais , Ovinos , Cálcio/metabolismo , Hidrolisados de Proteína/farmacologia , Cloreto de Cálcio/farmacologia , Cálcio da Dieta , Densidade Óssea , Osteoporose/metabolismo , Dieta
3.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489157

RESUMO

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Assuntos
Lupinus , Hidrolisados de Proteína , Animais , Camundongos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Antioxidantes/química , Lupinus/metabolismo , Subtilisinas/metabolismo , Endopeptidases/metabolismo , Hidrólise
4.
Food Chem ; 447: 138873, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452536

RESUMO

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Assuntos
Hidrolisados de Proteína , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peptídeos/farmacologia , Peptídeos/química , Músculos/metabolismo , Íons , Angiotensinas , Peptidil Dipeptidase A/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38430604

RESUMO

Typically, bioactive peptides were uncovered from complex hydrolysates using sequential bioassay-guided fractionation. To increase the efficiency of bioactive peptide screening, a simple and convenient tandem bioassay-guided fractionation based on solid-phase extraction (SPE) was conducted to screen the angiotensin-I-converting enzyme (ACE) inhibitory peptides from the hydrolysate of Inca nut cake protein (INCP). The so-called SCX-RP SPE system was constructed by assembling SCX (strong cation exchange) and RP (reversed phase) SPE cartridges. Using this tandem SCX-RP SPE, the INCP digested with combined gastrointestinal protease (INCP GP) was fractionated into 30 fractions. The fraction F11 exhibited the highest ACE inhibitory activity among 30 fractions. The ACE IC50 of fraction F11 was calculated to be 6.6 ± 0.5 µg/mL. The ACEI activity of fraction F11 was stronger than the INCP GP hydrolysate (ACE IC50 of 12.7 ± 0.4 µg/mL). The tandem SCX-RP SPE fractionation reduced the number of ACE inhibitory (ACEI) peptide candidates from 127 peptides in the INCP GP hydrolysate to only ten peptides in fraction F11. Subsequently, WALPTQSW (WW-8) and WLPTKSW (WW-7) from fraction F11 were synthesized, and their ACE IC50 was determined to be 4.7 ± 0.1 and 7.9 ± 0.1 µM, respectively. The dipeptidyl peptidase-4 (DPP4) inhibitory and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of WALPTQSW (WW-8) were also explored to give IC50 values of 131.7 ± 5.2 and 191.8 ± 7.0 µM, respectively. The molecular docking and inhibition mechanism studies indicated that WW-8 inhibited ACE and DPP4 as competitive and non-competitive inhibitors, respectively. The pre-incubation experiment of WW-8 toward ACE and DPP4 demonstrated that WW-8 was a true-inhibitor type. Additionally, the amount of WW-8 was quantified to be 5.8 ± 0.2 and 35 ± 0.4 µg per milligram hydrolysate and fraction F11, respectively. This study demonstrated tandem bioassay-guided SCX-RP SPE fractionation efficiently screened ACEI peptide derived from INCP GP hydrolysate, adding more value to Inca nut cake (a leftover of the oil industry) as a bioactive peptide precursor.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Hidrolisados de Proteína , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrolisados de Proteína/farmacologia , Dipeptidil Peptidase 4 , Nozes , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Extração em Fase Sólida , Peptidil Dipeptidase A
6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442226

RESUMO

Research on protein hydrolysates has observed various properties and functionalities on ingredients depending on the type of hydrolysate. The objective of this study was to evaluate the effects of hydrolyzed chicken protein that was incorporated into diets on digestibility, gut health, skin and coat health, oxidative stress, and intestinal inflammation markers in healthy adult dogs. Five complete and balanced diets were manufactured: (1) CONd: 25% chicken meal diet; (2) 5% CLHd: 5% chicken liver and heart hydrolysate plus 20% chicken meal diet; (3) CLHd: 25% chicken liver and heart hydrolysate diet; (4) 5% CHd: 5% chicken hydrolysate plus 20% chicken meal diet; (5) CHd: 25% chicken hydrolysate diet. A replicated 5 × 5 Latin square design was used which included 10 neutered adult Beagles. Each of the 5 periods consisted of a 7-d washout time and a 28-d treatment period. All diets were well accepted by the dogs. Fecal butyrate concentration was higher while fecal isovalerate and total phenol/indole were lower in dogs fed CLHd than CONd (P < 0.05). Dogs fed CHd had higher fecal immunoglobulin A concentration when compared with CLHd (P < 0.05); however, both groups were comparable to the CONd. There was no difference among groups in serum cytokine concentrations, serum oxidative stress biomarkers, or skin and coat health analyses (P > 0.05). Fecal microbiota was shifted by CLHd with higher abundance in Ruminococcus gauvreauii group as well as lower Clostridium sensu stricto 1, Sutterella, Fusobacterium, and Bacteroides when compared with CONd (P < 0.05). There was also a difference in beta diversity of fecal microbiota between CLHd and CHd (P < 0.05). In conclusion, chicken protein hydrolysate could be incorporated into canine extruded diets as a comparable source of protein to traditional chicken meal. The test chicken protein hydrolysates showed the potential to support gut health by modulating immune response and microbiota; however, functional properties of protein hydrolysates are dependent on inclusion level and source.


Research has been exploring various functional properties of hydrolyzed protein to benefit the health of animals. However, the functionality of a hydrolyzed protein depends on the type of hydrolysate. Therefore, this study was conducted to evaluate the effect of hydrolysates from chicken meat and hydrolysates from chicken heart and liver on digestibility, gut health, skin and coat health, oxidative stress, and inflammation in healthy adult dogs. Five canine diets were manufactured with similar ingredients except for the test protein sources. The control diet was formulated with chicken meal, a traditional protein source in pet food, and the other diets had a partial or complete substitution from the chicken meal with the two types of protein hydrolysate. The diets were all well accepted by the dogs and all dogs maintained healthy throughout the study. Dogs fed the hydrolysate from chicken meat showed lower inflammatory biomarkers in the feces. On the other hand, dogs fed the hydrolysate from chicken liver and heart demonstrated a shift in gut microbiota with more abundant beneficial bacteria. In conclusion, poultry-originated protein hydrolysates showed the potential in making positive changes in inflammatory state, immune response, and microbiota in healthy adult dogs.


Assuntos
Microbiota , Hidrolisados de Proteína , Cães , Animais , Hidrolisados de Proteína/farmacologia , Digestão , Fezes/microbiologia , Nutrientes/metabolismo , Dieta/veterinária , Galinhas , Ração Animal/análise
7.
J Food Sci ; 89(4): 2482-2493, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369943

RESUMO

The calcium-binding capacity and osteoblast proliferation and differentiation were studied in Alaska pollock surimi hydrolysate (APSH) using a system that mimics the gastrointestinal digestive system. Evaluation of the calcium absorption-promoting ability of APSH revealed that the best calcium-binding ability was achieved after hydrolysis with a combination of pepsin, α-chymotrypsin, and trypsin, and separation into <3 kDa (APSH-I), 3-5 kDa (APSH-II), 5-10 kDa (APSH-III), and <10 kDa (APSH-IV) fractions. Scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis confirmed that the hydrolysate and calcium ions formed a complex. Comparison of the calcium absorption capacity using Caco-2 cells showed that calcium absorption was promoted by these hydrolysates. Measurement of the osteoblast activation revealed higher alkaline phosphatase activity, collagen synthesis, and mineralization effect for the low-molecular-weight hydrolysate (LMH) than for the other hydrolysates. In addition, LMH promoted the expression of osteocalcin, osteopontin, and bone morphogenetic protein-2 and -4, which are hormones related to bone formation. Expression of the Runx2 transcription factor, which regulates the expression of these hormones, also increased. These results suggest that Alaska pollock surimi protein hydrolysates prepared using a system that mimics gastrointestinal hydrolysis may result in better osteoblast proliferation and bone health than those prepared using other proteases.


Assuntos
Cálcio , Osteogênese , Humanos , Cálcio/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Células CACO-2 , Alaska , Diferenciação Celular , Osteoblastos/metabolismo , Cálcio da Dieta/metabolismo , Hormônios/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo
8.
Mol Nutr Food Res ; 68(5): e2300503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308501

RESUMO

Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.


Assuntos
Antioxidantes , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hidrolisados de Proteína/farmacologia , Dieta Ocidental , Estresse Oxidativo , Encéfalo/metabolismo , Apolipoproteínas E/genética
9.
Int J Biol Macromol ; 262(Pt 1): 129992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331070

RESUMO

Ionic strength condition is a crucial parameter for food processing, but it remains unclear how ionic strength alters the structure and digestibility of binary complexes containing starch and protein/protein hydrolysates. Here, the binary complex with varied ionic strength (0-0.40 M) was built by native corn starch (NS) and soy protein isolate (SPI)/hydrolysates (SPIH) through NaCl. The inclusion of SPI and SPIH allowed a compact network structure, especially the SPIH with reduced molecule size, which enriched the resistant starch (RS) of NS-SPIH. Particularly, the higher ionic strength caused the larger nonperiodic structures and induced loosener network structures, largely increasing the possibility of amylase for starch digestion and resulting in a decreased RS content from 19.07 % to 15.52 %. In other words, the SPIH hindered starch digestion while increasing ionic strength had the opposite effect, which should be considered in staple food production.


Assuntos
Amido Resistente , Amido , Amido/química , Amido Resistente/farmacologia , Hidrolisados de Proteína/farmacologia , Amilases , Concentração Osmolar , Digestão
10.
J Food Sci ; 89(4): 1944-1959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411027

RESUMO

This study sought to purify and identify antioxidant peptides from sheep (Ovis aries) plasma protein hydrolysates and assess their protective impacts on H2O2-induced Caco-2 cells. The purification process involved reversed high-performance liquid chromatography, anion-exchange chromatography, and Sephadex G-25. Three peptides, namely Trp-Glu-Glu-Pro-Ala-Met (WEEPAM), Ser-Leu-His-Phe-Met-Glu (SLHFME), and His-Cys-Thr-Thr-Phe-Met-Ile, with molecular weights of 761.84, 762.87, and 852.03 Da, respectively, were identified by liquid chromatography with tandem mass spectrometry. Among the three antioxidant peptides, superoxide radical (O2 -) radical scavenging capacity of WEEPAM and SLHFME was not significantly different from glutathione (GSH) (p > 0.05), while their 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity was greater than GSH (p < 0.05). WEEPAM revealed increased antioxidant activity after pepsin and trypsin hydrolysis under an in vitro digestion model. In addition, WEEPAM inhibited oxidative damage in Caco-2 cells by significantly reducing reactive oxygen species accumulation, early apoptosis, malondialdehyde formation, and increasing intracellular superoxide dismutase, glutathione peroxidase, and catalase activities.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Humanos , Animais , Ovinos , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Peróxido de Hidrogênio/farmacologia , Células CACO-2 , Sequência de Aminoácidos , Peptídeos/farmacologia , Peptídeos/química , Estresse Oxidativo
11.
J Nutr Sci Vitaminol (Tokyo) ; 70(1): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417848

RESUMO

In this study, we investigated the effects of a porcine liver protein hydrolysate (PLH) diet on lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a model of type II diabetes. OLETF rats (20-wk-old males) were pair-fed with either a PLH diet containing 20% PLH or a casein diet for 14 wk. Dietary PLH significantly lowered serum cholesterol and phospholipid concentrations, mainly by decreasing low-density lipoprotein and high-density lipoprotein fractions. Fecal cholesterol was significantly increased in the PLH diet group; however, the total bile acid concentration in the feces was not significantly different between the groups. In addition, the PLH diet significantly decreased serum thiobarbituric acid reactive substance concentrations. These results suggest that dietary PLH exerts hyperlipidemic and antioxidant effects, indicating that it is a novel functional food ingredient.


Assuntos
Diabetes Mellitus Tipo 2 , Carne de Porco , Carne Vermelha , Ratos , Masculino , Animais , Suínos , Ratos Endogâmicos OLETF , Diabetes Mellitus Tipo 2/metabolismo , Antioxidantes/farmacologia , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Fígado/metabolismo , Colesterol/metabolismo
12.
Food Res Int ; 176: 113813, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163717

RESUMO

The proteins were mainly derived from Protaetia brevitarsis larval extracts obtained using two empty intestine methods (traditional static method: TSM or salt immersion stress method: SISM) and extraction solvents (water: W or 50 % water-ethanol: W:E), and the proteins were used as objects to investigate the effect of emptying intestine methods on hypolipidemic peptides. The results revealed that the F-2 fractions of protein hydrolysate had stronger in vitro hypolipidemic activity, with the peptides obtained by SISM possessing a stronger cholesterol micelle solubility inhibition rate, especially in SISM-W:E-P. Moreover, a total of 106 peptides were tentatively identified, among which SISM identified more peptides with an amino acid number < 8. Meanwhile, five novel peptides (YPPFH, YPGFGK, KYPF, SPLPGPR and VPPP) exhibited good hypolipidemic activity in vitro and in vivo, among which YPPFH, VPPP and KYPF had strong inhibitory activities on pancreatic lipase (PL) and cholesteryl esterase (CE), and KYPF, SPLPGPR and VPPP could significantly reduce the TG content in Caenorhabditis elegans. Thus, P. brevitarsis can be developed as a naturally derived hypolipidemic component for the development and application in functional foods.


Assuntos
Besouros , Hidrolisados de Proteína , Animais , Larva/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Besouros/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Água/metabolismo , Proteínas de Insetos/farmacologia , Proteínas de Insetos/metabolismo
13.
J Sci Food Agric ; 104(6): 3676-3684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158779

RESUMO

BACKGROUND: More than 50% of the world's population is infected with Helicobacter pylori, which is classified as a group I carcinogen by the World Health Organization (WHO). RESULTS: Corn protein dual-functional peptides were identified and functionally analyzed in vitro and in silico. Two novel dual-functional peptides were identified as Cys-Gln-Asp-Val-Pro-Leu-Leu (CQDVPLL, CQ7) and Thr-Ile-Phe-Pro-Gln-Cys (TIFPQC, TI6) using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). The antiadhesive effects against H. pylori of CQ7 and TI6 were 45.17 ± 2.41% and 48.62 ± 1.84% at 4 mg mL-1 , respectively. In silico prediction showed that CQ7 and TI6 had good physicochemical properties. Molecular docking demonstrated that CQ7 and TI6 could bind to the adhesins BabA and SabA by hydrophobic interactions and hydrogen bonds, preventing H. pylori infection. Moreover, CQ7 showed strong antioxidant activity due to its unique amino acid composition. CONCLUSION: The present study demonstrated that the identified peptides, CQ7 and TI6, possess antioxidant and antiadhesive effects, preventing H. pylori infection and alleviating oxidative injury to the gastric mucosa. © 2023 Society of Chemical Industry.


Assuntos
Helicobacter pylori , Antioxidantes/farmacologia , Hidrolisados de Proteína/farmacologia , Simulação de Acoplamento Molecular , Zea mays , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química
14.
J Dairy Sci ; 107(5): 2620-2632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101744

RESUMO

This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.


Assuntos
Peróxido de Hidrogênio , Fármacos Neuroprotetores , Animais , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Glutamina/farmacologia , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Isoleucina/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Soro do Leite/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
15.
Se Pu ; 41(11): 995-1001, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-37968818

RESUMO

The aim of this study is to explore differences in the peptidomics of Saccharomyces pastorianus protein hydrolysates treated with different enzymes. Briefly, differences in the peptide fingerprints and active peptides of neutral protease/papain-hydrolyzed S. pastorianus were analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) combined with PEAKS Online 1.7 analysis software, Peptide Ranker, and the BIOPEP database. Compared to traditional databases, the PEAKS Online uses de novo sequencing for analysis to obtain oligopeptides smaller than pentapeptides. It provides more comprehensive data of the peptide sample. In this study, enzymatic hydrolysates of S. pastorianus protein were prepared under the optimum conditions of neutral protease and papain respectively. In total, 7221 and 7062 polypeptides were identified in the hydrolysates of neutral protease and papain, respectively; among these polypeptides, 980 were common to the two enzymes. The 6241 and 6082 unique peptides found in the hydrolysates of neutral protease and papain, respectively, indicated that the peptide fingerprints of the two hydrolysates are quite different. Peptide Ranker predicted that 3013 (41.73%) and 3095 (43.83%) peptides were potentially bioactive in the hydrolysates of neutral protease and papain, respectively. According to the BIOPEP database, neutral protease and papain contained 295 and 357 active peptides, respectively; these peptides were mainly composed of angiotensin converting enzyme (ACE) inhibitors and dipeptidyl peptidase IV inhibitors and antioxidant peptides. The number of active peptides in the hydrolysate of papain was higher than that in the hydrolysate of neutral protease, but the total ion intensity of active peptides in the former was lower than that in the latter. This study revealed the influence of protease type on the composition of enzymatic hydrolysates from S. pastorianus protein. The above results provide a reference for the development of functional products of S. pastorianus protein peptides and the high-value utilization of yeast resources.


Assuntos
Papaína , Hidrolisados de Proteína , Papaína/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Hidrólise
16.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895063

RESUMO

Enzymatic hydrolysis of bovine and human hemoglobin generates a diversity of bioactive peptides, mainly recognized for their antimicrobial properties. However, antimicrobial peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. This study focuses on the production of bioactive peptides from hemoglobin and evaluates their anticancer potential using two distinct approaches. The first approach is based on the use of a rapid screening method aimed at blocking host cell protein synthesis to evaluate candidate anticancer peptides, using Lepidium sativum seed germination as an indicator. The results show that: (1) The degree of hydrolysis (DH) significantly influences the production of bioactive peptides. DH levels of 3 to 10% produce a considerably stronger inhibition of radicle growth than DH 0 (the native form of hemoglobin), with an intensity three to four times greater. (2) Certain peptide fractions of bovine hemoglobin have a higher activity than those of human hemoglobin. (3) The structural characteristics of peptides (random coil or alpha helix) play a crucial role in the biological effects observed. (4) The α137-141 peptide, the target of the study, was the most active of the fractions obtained from bovine hemoglobin (IC50 = 29 ± 1 µg/mL) and human hemoglobin (IC50 = 48 ± 2 µg/mL), proving to be 10 to 15 times more potent than the other hemoglobin fractions, attributed to its strong antimicrobial potential. The second approach to assessing anticancer activity is based on the preliminary in vitro analysis of hydrolysates and their peptide fractions, with a focus on the eL42 protein. This protein is of major interest due to its overexpression in all cancer cells, making it an attractive potential target for the development of anticancer molecules. With this in mind, astudy was undertaken using a method for labeling formylase (formyl-methionyl-tRNA transformylase (FMTS)) with oxidized tRNA. This approach was chosen because of the similarities in the interaction between formylase and the eL42 protein with oxidized tRNA. The results obtained not only confirmed the previous conclusions but also reinforced the hypothesis that the inhibition of protein synthesis plays a key role in the anticancer mechanism of these peptides. Indeed, the data suggest that samples containing α137-141 peptide (NKT) and total hydrolysates may have modulatory effects on the interaction between FMTS and oxidized tRNA. This observation highlights the possibility that the latter could influence molecular binding mechanisms, potentially resulting in a competitive situation where the ability of substrate tRNA to bind efficiently to ribosomal protein is compromised in their presence. Ultimately, these results suggest the feasibility of obtaining candidate peptides for biological anticancer drugs from both human and bovine hemoglobin sources. These scientific advances show new hope in the fight against cancer, which affects a large number of people around the world.


Assuntos
Anti-Infecciosos , Antineoplásicos , Humanos , Hidrólise , Peptídeos/farmacologia , Peptídeos/química , Anti-Infecciosos/farmacologia , Hemoglobinas/química , Antineoplásicos/farmacologia , RNA de Transferência , Hidrolisados de Proteína/farmacologia
17.
Nutrients ; 15(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37892468

RESUMO

Whey protein hydrolysate (WPH) has been shown to have a variety of bioactivities. This study aimed to investigate the preventive effect of WPH on dextran sodium sulfate (DSS)-induced colitis in C57BL/6J mice. The results indicated that WPH intervention for 37 days was effective in delaying the development of colonic inflammation, and high doses of WPH significantly inhibited weight loss (9.16%, n = 8, p < 0.05), protected the colonic mucosal layer, and significantly reduced the levels of inflammatory factors TNF-α, IL-6, and IL-1ß in mice with colitis (n = 8, p < 0.05). In addition, WPH intervention was able to up-regulate the short-chain fatty acids secretion and restore the gut microbiome imbalance in mice with colitis. Notably, high-dose WPH intervention increased the relative abundance of norank_f_Muribaculaceae by 1.52-fold and decreased the relative abundance of Romboutsia and Enterobacter by 3.77-fold and 2.45-fold, respectively, compared with the Model group. WPH intervention protected colitis mice mainly by reversing the microbiome imbalance and regulating the major histocompatibility complex (MHC) class I pathway. This study showed that WPH has anti-inflammatory activity and a promising colitis management future.


Assuntos
Colite , Microbiota , Animais , Camundongos , Dextranos/uso terapêutico , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Hidrolisados de Proteína/metabolismo , Soro do Leite/metabolismo , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Anti-Inflamatórios/efeitos adversos , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
18.
Food Funct ; 14(21): 9936-9946, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37859609

RESUMO

Despite numerous studies having reported the effects and mechanisms of antihypertensive peptides including peptides derived from egg white proteins, the role of peptides in a female hypertensive animal model is unknown. On the other hand, the role of epigenetic modulation by peptide treatment has rarely been investigated. This study sought to investigate the effect of egg white protein hydrolysate (EWH) in female spontaneously hypertensive rats (SHRs) as well as to explore the underlying mechanisms from the perspectives of the transcriptome and the profiles of non-coding RNAs. Young (12-14-week-old) female SHRs were orally administered 250 mg per kg body weight (low-dose) or 1000 mg per kg body weight (high-dose) EWH daily for 10 weeks. The blood pressure of the rats was monitored weekly. The mRNA and non-coding RNAs (miRNA, lncRNA, and circRNA) in the aorta were profiled by the high-throughput RNA-seq technique. Differentially expressed (DE) RNAs in the aorta were identified for the construction of the competing endogenous RNA (ceRNA) networks and key molecules were validated by qRT-PCR. The treatment of the high-dose EWH showed a significant effect on reducing blood pressure in female SHRs. Bioinformatic analyses revealed 813, 90, 347 and 869 DE-mRNAs, DE-miRNAs, DE-lncRNAs and DE-circRNAs, respectively. The CNTN5-LncRNA-XR_001835895.1-miR-384-5p was identified as the central network which was validated in the aorta and circulation of female SHRs. The results from this study demonstrated that the treatment with EWH reduced blood pressure via regulating the ceRNA networks in female SHRs, which provided novel insights into the mechanisms of food protein-derived antihypertensive peptides.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Ratos , Animais , Ratos Endogâmicos SHR , Hidrolisados de Proteína/farmacologia , Pressão Sanguínea , RNA Longo não Codificante/genética , Anti-Hipertensivos , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular , Peptídeos/farmacologia , Peptídeos/genética , Peso Corporal
19.
PLoS One ; 18(10): e0292947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851665

RESUMO

It is well known that the Asian water monitors or Varanus salvator are both scavengers and predators. They can live and survive in the place that exposed to harmful microorganisms. Most people believe that they have some protected mechanisms to confront those infections. The aim of this study is to determine the antibacterial activities of crude peptides and protein hydrolysates extracted from serum of the Varanus salvator. Ten types of bacteria were cultured with crude peptides and protein hydrolysates which were isolated from 21 Varanus salvator's serum. The crude peptides showed some interested inhibition percentages against Enterobacter aerogenes ATCC13048 = 25.6%, Acinetobacter baumannii ATCC19606 = 33.4%, Burkholderia cepacia ATCC25416 = 35.3% and Pseudomonas aeruginosa ATCC27853 = 25.8%, whereas the protein hydrolysates had some inhibition potential on Burkholderia cepacia ATCC25416 = 24.3%. For the rest results of other tests were below 20% of inhibition. In addition, the evidences show that crude peptides have better antibacterial performances significantly than protein hydrolysates on most tested bacteria. Furthermore, antimicrobial peptides prediction shows about 10 percent hit (41/432 sequences). The interpretation shows that the best hit sequence is highly hydrophobic. It may destroy outer membrane of Gram-negative hence prevents the invasion of those bacteria. Altogether, bioinformatics and experiments show similar trends of antimicrobial peptide efficacy from Varanus salvator. Further studies need to be conducted on peptide purification and antimicrobial peptide candidate should be identified.


Assuntos
Antibacterianos , Hidrolisados de Proteína , Humanos , Hidrolisados de Proteína/farmacologia , Antibacterianos/química , Bactérias , Peptídeos/farmacologia , Peptídeos Antimicrobianos , Água , Testes de Sensibilidade Microbiana
20.
Biomed Pharmacother ; 167: 115604, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804811

RESUMO

Age-related muscle loss and dysfunction, sarcopenia, is a common condition that results in poor quality of life in the elderly. Protein supplementation is a potential strategy for preventing sarcopenia and increasing muscle synthesis, but the effectiveness of protein type and level in improving sarcopenia is not well understood. In this study, we compared animal protein hydrolysate (APH), which has a high protein digestibility-corrected amino acid score (PDCAAS) and low molecular weight, with casein as a control group to investigate the effects and mechanisms of sarcopenia improvement, with a particular focus on the gut-muscle axis. APH supplementation improved age-related declines in muscle mass, grip strength, hind leg thickness, muscle protein level, muscle fiber size, and myokine levels, compared to the control group. In particular, levels of plasma cortisol, muscle lipids, and muscle collagen were markedly reduced by APH supplements in the aged mice. Furthermore, APH efficiently recovered the concentration of total SCFAs including acetic, propionic, and isovaleric acids decreased in aged mice. Finally, APH induced changes in gut microbiota and increased production of SCFAs, which were positively correlated with muscle protein level and negatively correlated with pro-inflammatory cytokines. In conclusion, APH can help to inhibit age-related sarcopenia by increasing muscle synthesis, inhibiting muscle breakdown, and potentially modulating the gut-muscle axis.


Assuntos
Sarcopenia , Humanos , Idoso , Animais , Camundongos , Sarcopenia/tratamento farmacológico , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Músculo Esquelético/metabolismo , Qualidade de Vida , Proteínas Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...